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Identifying  pharmaceutical  ingredients  is  a routine  procedure  required  during  industrial  manufacturing.
Here  we  show  that  a recently  developed  Raman  compressive  detection  strategy  can  be employed  to clas-
sify various  widely  used  pharmaceutical  materials  using  a hybrid  supervised/unsupervised  strategy  in
which  only  two  ingredients  are used  for training  and  yet  six other  ingredients  can  also  be  distinguished.
More  specifically,  our  liquid  crystal  spatial  light  modulator  (LC-SLM)  based  compressive  detection  instru-
ment  is trained  using  only  the active  ingredient,  tadalafil,  and  the  excipient,  lactose,  but  is  tested  using
ompressive detection
aman spectroscopy
apid classification
LS-DA
rocess analytical technology (PAT)
ialis®

these  and  various  other  excipients;  microcrystalline  cellulose,  magnesium  stearate,  titanium  (IV)  oxide,
talc, sodium  lauryl  sulfate  and  hydroxypropyl  cellulose.  Partial  least  squares  discriminant  analysis  (PLS-
DA) is  used  to generate  the  compressive  detection  filters  necessary  for  fast  chemical  classification.
Although  the filters  used  in this  study  are  trained  on  only  lactose  and  tadalafil,  we  show  that  all  the  phar-
maceutical  ingredients  mentioned  above  can be differentiated  and  classified  using  PLS-DA  compressive

ccum
detection  filters  with  an  a

. Introduction

In an effort to increase the efficiency and quality of pharmaceuti-
al manufacturing, the U.S. Food and Drug Administration (USFDA)
ssued a process analytical technology (PAT) initiative to encourage
he industry to innovate and adopt new measurement technolo-
ies for the development, manufacturing and quality assurance of
rug products [1]. The goal is to achieve increased quality and
roductivity through improved understanding of manufacturing
rocesses. The PAT initiative offers a fundamental shift from cur-
ent laboratory-based quality control approaches by establishing
hat quality should be tested frequently at earlier stages in manu-
acturing. It emphasizes timely measurements of quality attributes
f raw and in-process materials and finished products. The PAT
uidance brought a new challenge to the industry in the sense that
imely measurements necessitate that testing should be brought
o the production floor from the quality assurance laboratories.
raditionally, invasive instrumentations such as high performance
iquid chromatography (HPLC), gas chromatography, mass spec-
roscopy or wet chemistry techniques are commonly employed in

uality control laboratories. These techniques are generally time-
onsuming, labor-intensive and laboratory-based, which makes it
ifficult to employ them on the production floor. With the advent

∗ Corresponding author. Tel.: +1 631 9440305.
E-mail address: deryacebecimaltas@gmail.com (D. Cebeci Maltaş ).
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of PAT, the demand is now shifted to faster analytical instruments
with the ability to monitor manufacturing process in real time and
which can be employed along the production line [2]. The PAT
initiative accordingly spurred an immense interest in vibrational
spectroscopy thanks to its features such as its speed and noninva-
sive nature.

Although near infrared spectroscopy (NIRS) is more common
as a PAT sensor, recent technological and scientific advancements
have broadened the applicability of Raman spectroscopy into var-
ious areas [3]. Compared to NIRS, the Raman spectrum gives more
structural information on the molecular level with a higher speci-
ficity; NIR spectral bands are generally very broad and overlapped.
This attribute makes the Raman technique a valuable tool for
sample identification within the pharmaceutical industry, since
each chemical has a unique vibrational fingerprint. Also, Raman
spectroscopy has a major advantage of being insensitive to water
content, which is a significant obstacle to NIR detection. Water
is a very strong IR absorber but a weak Raman scatterer. On
the other hand, the cross-section of Raman is low, which makes
the Raman technique quite inefficient. Thus, conventional charge-
coupled device (CCD) based Raman instruments require a collection
time of the order of seconds per point to produce signals with
decent signal-to-noise ratio. In order to overcome the speed limita-

tion of traditional Raman spectroscopy, recently a new Multivariate
Hyperspectral Imaging (MHI) Raman method was introduced [4].
The MHI  system is based on a liquid-crystal spatial-light-modulator
compressive detection (LC-SLM-CD) strategy. Here we demonstrate

dx.doi.org/10.1016/j.jpba.2013.02.029
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
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6 ceutic

t
s
s

r
a
R
c
o
o
n
(
t
s
a

s
u
c
m
r
m
t
s
d
i
i
t
s
T
u
t
p
d
t
p

i
m
i
a
w
s
i
t
o
fi
a
u
S
a
t

2

c
l
s
s
d
(
M
w
G
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hat this LC-SLM-CD may  also be used to implement a new hybrid
upervised/unsupervised pharmaceutical chemical classification
trategy.

The LC-SLM consists of an array of liquid crystal pixels whose
eflectivity is computer programmable [4]. The fundamental
dvantage of the LC-SLM-CD detection strategy over traditional
aman instruments is that a single channel detector is used to
ollect all the light transmitted (reflected) by each programmable
ptical filter, and thus provides higher signal-to-noise than is
btainable when the same light is distributed over the many chan-
els of an optical array detector such as a charge-coupled-device
CCD). Accordingly, the LC-SLM-CD detection strategy speeds up
he collection of Raman data and makes it attractive as an analytical
ensor for PAT applications by synchronizing rapid data collection
nd multivariate data analysis.

Prior to their use in manufacturing, all drug components are
ubject to identity verification testing. The tools that are typically
sed for this purpose generally fall into two categories: spectral
orrelation functions, such as hit-quality index; and factor-based
ultivariate algorithms, such as PLS. Spectral correlation algo-

ithms are conventionally the more common tool in the industry
ainly due to their simplicity. However this technique is not selec-

ive enough to differentiate chemical species with high chemical
imilarity [5]. Factor-based multivariate algorithms with higher
iscriminating power, on the other hand, are often very effective

n detecting even subtle spectral differences [5,6]. Each chemical is
dentified by n-wavenumber dimensions in Raman spectrum. Mul-
ivariate algorithms basically work by compressing n-dimensional
pectra onto new, fewer dimensions in a new coordinate space.
hey require post-processing of spectral data to produce score val-
es from full spectra. A property of interest, such as identity, is
hen defined by score values on each new axis in this new com-
ressed coordinate space. LC-SLM compressive detection strategy
iffers from the usual way of applying multivariate algorithms in
he way that it generates the scores in its hardware, eliminating all
ost-processing necessary to obtain scores values from full spectra.

This study is focused on evaluating the feasibility and the
mplementation of the newly built LC-SLM-CD Raman instru-

ent as a potential PAT sensor to classify various pharmaceutical
ngredients using multivariate filters. The ingredients chosen
re the components used in highly counterfeited Cialis® tablets
here the active ingredient is tadalafil. We  followed a hybrid

upervised/unsupervised strategy. We  built a PLS-DA multivariate
dentification system with a two-component training library to test
he LC-SLM-CD responses obtained using those two as well as six
ther pharmaceutical components. More specifically, multivariate
lter functions were supervised by two ingredients and then were
pplied on LC-SLM-CD to classify both supervised and six other
nsupervised raw materials. Our goal was to test whether our LC-
LM-CD strategy could be used to identify/classify compounds that
re outside of a given training library as well as the compounds in
he training library.

. Experimental

The following raw materials were used in order to evaluate the
lassification ability of the LC-SLM-CD Raman system: Tadalafil,
actose monohydrate, microcrystalline cellulose (MCC), magne-
ium stearate (MgSt), titanium (IV) oxide (TiO2), talc, sodium lauryl
ulfate (NaLS) and hydroxypropylcellulose (HPC). Lactose monohy-
rate, MgSt, NaLS and talc were obtained from Spectrum Chemicals

Gardena, CA). HPC was obtained from Ashland Inc. (Covington, KY).

CC  was obtained from FMC  Biopolymer (Philadelphia, PA). TiO2
as obtained from the Sigma–Aldrich Company (St. Louis, MO).
enuine Cialis® tablets (20 mg)  (Eli Lilly, Indianapolis, IN) were
al and Biomedical Analysis 80 (2013) 63– 68

acquired from the Purdue University Pharmacy (West Lafayette,
IN). Tadalafil was  obtained through recrystallization following
extraction from the genuine Cialis® tablets using the following pro-
cedure: The coating of three Cialis® tablets was  removed using a
razor blade. The uncoated tablets were ground into a fine pow-
der using a mortar and pestle. 30 ml  of ethanol (Sigma–Aldrich)
was added to the powder. The solution was thoroughly mixed and
insoluble material was allowed to settle by gravity overnight. The
solution was  filtered using filter paper (No. 1, Whatman, Maidstone,
UK). The resultant solution was filtered again using a syringe filter
(0.2 �m PTFE, VWR, Radnor, PA) to remove smaller particulates. The
supernatant was collected and the solvent was  evaporated slowly
under ambient conditions yielding tadalafil crystals.

Sample powders of these drug components were placed in 96
well-plates and their spectral responses were collected on the
LC-SLM-CD instrument with 785 nm excitation and with approxi-
mately 80 mW power at the sample. A 20× (NA 0.40) NIR objective
lens (Olympus, LMPL20XIR) was  used to focus the laser onto the
sample and to collect the scattered Raman photons. Compressive
detection optical filters were generated using PLS algorithm on
PLS Toolbox (Eigenvector Research Inc., WA)  installed in Matlab
(MathWorks, Inc., MA).

3. Results and discussion

3.1. Presentation of compressive detection filter techniques

The LC-SLM based Raman instrument can function as a conven-
tional spectrometer to acquire full Raman spectra of chemicals or
as a hyperspectral imaging instrument utilizing compressive spec-
tral detection strategies to acquire spectral responses. However, the
speed advantage of this Raman instrument is realized only when it
is used in hyperspectral mode, operated with compressive detec-
tion filters. The filter functions can be computed with univariate or
multivariate statistical techniques. They can be represented by n-
dimensional vectors (n = 128). LC-SLM-CD effectively measures the
dot-product of the filter vector and the spectral vector. Generally, in
a univariate analysis, a property of interest is calculated based on a
single value. For example; area of a certain peak in the spectrum can
be correlated with the quantity of the ingredient to which that cer-
tain peak corresponds. As an example, a univariate approach may
be appropriate if the purpose is to investigate active pharmaceutical
ingredients (API) in pharmaceutical formulations. For a large num-
ber of APIs, the Raman technique is especially sensitive because of
their aromatic functional groups. Unsaturated carbon bonds and
aromatic ring functional groups tend to give strong Raman sig-
natures around 1600 cm−1, whereas the majority of excipients do
not tend to produce any signals due to the lack of unsaturation or
aromatic ring in their molecular structure.These attributes provide
an excellent means to spatially locate an API in tablets with using
Raman spectroscopy. A univariate filter on the LC-SLM-CD Raman
system is generated by “turning off” all the pixels on the SLM except
the ones that correspond to the unique peak of a certain chemical
which does not overlap with other peaks. To illustrate this, Fig. 1
shows the Raman spectra of an active pharmaceutical ingredient,
tadalafil, and the majority of the excipients in Cialis® tablets. The
peak boxed by black dotted-line at around 1600 cm−1 is unique to
active ingredient tadalafil, and does not overlap with the spectral
signatures from any other excipients. A univariate approach can be
implemented to investigate tadalafil in a Cialis® tablet by turning
on the SLM pixels associated with the peak at 1600 cm−1 to 100%

transmittance and setting all other pixels to 0% transmittance by
turning them off. As a result, only the photons that interact with
the pixels that are ‘on’ will reach the detector and be detected. The
intensity of the photons detected is directly related to the amount
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Fig. 1. Spectra of Cialis® ingredients with 785 nm laser line using a CCD-based
Raman spectrometer. Each spectrum is normalized to the area and is offset on y
axis  for better illustration. (Spectra here are not corrected to the quantum efficiency
of  CCD detector) (a) Tadalafil, 10s (b) Lactose monohydrate, 10s (c) magnesium
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Fig. 2. Pure component spectra for PLS-DA training matrix X. Black spectrum is the
Hadamard transform spectrum of tadalafil. Red is the hadamard transform spectrum
of  lactose. Spectra are normalized to unit area. Hadamard spectroscopy is employed
with 128 resolution elements. Accumulation time per Hadamard filter was 1 s, thus
total  collection time of each spectrum was 128 s. Only one spectrum for each com-

The output of a PLS-DA analysis with two  LVs using a 2-column
property matrix Y is four regression vectors sorted by their contri-
bution to the changes in X and Y. (b1, b3) and (b2, b4) correspond to
the regression vector sets for the first (tadalafil = 100) and second
tearate, 60s (d) Talc, 60s, (e) hydroxypropylcellulose, 60s (f) microcrystalline cel-
ulose, 10 s (g) sodium lauryl sulfate, 60s (h) titanium (IV) oxide, 5s.

f tadalafil at a certain location on the tablet. Univariate filters may
e more valuable due to their simplicity than multivariate based fil-
ers when the investigated chemical has a unique peak observable
s in the tadalafil spectrum in Fig. 1. However, isolating a unique
eak belonging to the query material may  not always be feasible,
specially considering the number of constituents typically present
n a pharmaceutical solid formulation. In such cases, multivariate
hemometric techniques are more appropriate than a univariate
pproach. While a univariate technique correlates one independent
ariable, such as quantity, to a single dependent variable, such as
eak area or intensity, multivariate techniques take many variables

nto account, extracting the relevant information while disposing
f information that is not correlated with the chemical variables of
nterest. One of the most commonly used multivariate techniques is
artial least squares (PLS) [7]. This technique finds the latent vectors
LVs) describing the variance in training matrix (as in PCA and PCR)
hile correlating it with the property vector or matrix. It calculates

cores and loadings for each latent vector computed.

.2. Presentation of PLS-DA multivariate filters for LC-SLM
ompressive detection

To create compressive detection filter functions by implemen-
ing PLS-DA algorithm for the LC-SLM Raman instrument, first full
aman spectra of the chemicals are needed. The LC-SLM Raman
ystem can be used as a conventional scanning spectrometer by
tilizing Hadamard ENREF [8] filter functions to create full spectra.
ig. 2 shows the Hadamard transformed spectra of pure tadalafil
nd lactose, which are the two components that PLS-DA filters
re trained on for this study. Prior to implementing the PLS-DA
lgorithm, the spectra are first normalized to unit area to mini-
ize any variance induced by any instrumental fluctuations and

ample alignment which would otherwise disturb intensity mea-
urements. Then PLS-DA, which is demonstrated to be equivalent
o performing classical least squares under certain conditions [9],
s performed with a property matrix (Fig. 3). The algorithm is
ssentially implemented on each column of the property matrix

ndividually, calculating specific regression vectors for each col-
mn. If the purpose was only to investigate tadalafil and lactose, a
roperty vector would be enough to distinguish the two. However,

n this hybrid supervised/unsupervised strategy we  investigated
ponent is shown here although two spectra from each ingredient are used to be
employed in PLS-DA application. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

not only tadalafil and lactose but also six other unsupervised ingre-
dients as well. Hence, we  needed more than one coordinate axis
(Fig. 5) to be able to increase the selectivity of this model. The ulti-
mate purpose of the PLS algorithm is to create an optimum set of
regression vectors by correlating the training matrix of X to a prop-
erty matrix of Y. It finds a linear relation between X and Y, using
a regression coefficients matrix B and an error matrix E (equation
in Fig. 3). Fig. 3 shows how we set the PLS-DA algorithm to gener-
ate a regression coefficients matrix B for LC-SLM-CD compressive
detection filter generation. The resolution element of LC-SLM-CD
instrument for this study was 128; each Raman spectrum obtained
consists of 128 wavenumber units. The training matrix X is made
from two  spectra of pure tadalafil and lactose samples and the prop-
erty matrix is composed of only 100s and 0s. For a two-component
system such as tadalafil and lactose, the number of latent vec-
tors (LV) to be calculated that accounts for ∼100% variability in
both the training matrix X and property matrix Y is typically two.
Fig. 3. Schematic of PLS-DA filter function set-up to generate regression coefficients
vectors to be used for LC-SLM-CD filter production trained on only two components;
tadalafil and lactose. E represents the residual matrix.
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Fig. 4. PLS-DA derived compressive detection filter generation for tadalafil and lac-
tose. (A) PLS-DA output regression vectors using spectra from Fig. 2. Black line is
when tadalafil is coded 100 and red line is when lactose is coded 100. (B and C)
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Fig. 5. LC-SLM-CD responses of raw pharmaceutical powders to the filters trained
on tadalafil and lactose. The abscissa represents the filter where lactose is coded as
100 and the ordinate represents where tadalafil is coded 100. The response values
plitting of the vectors b3 in (B) and b4 in (C) into positive (solid) and the absolute
alue of the negative portion (dashed). All portions are scaled to a maximum value
f  1.

olumns (lactose = 100) of the property matrix, respectively. The
rst vector pair, [b1, b2] (for LV1), accounts for only about 50%
f the changes in the data set and they are not suitable for LC-
LM-CD applications. In a two component tadalafil-lactose system,
he second pair, third and fourth regression vectors [b3, b4] (for
V2) is used for LC-SLM-CD filter generation (Fig. 3). Because the
hanges in Raman signal are uncorrelated with the noise, spectral
eatures and noise tend to be separated into different vectors. The
dditional information contained in the third [b5, b6] (for LV3) and
ourth [b7,b8] (for LV4) vector pairs (not shown in Fig. 3) is likely
o come mostly from noise and should not be considered for filter
pplications.

Fig. 4(A) shows the output regression vectors of the PLS-DA anal-
sis for tadalafil vs. lactose system. The black curve (b3) represents
he regression vector where tadalafil is coded as 100 and lactose 0
nto the PLS-DA algorithm, whereas the red curve (b4) is the out-
ut vector when lactose is coded as 100 and tadalafil as 0. Hence,
he LC-SLM-CD response value of 100 to the regression vector b3
ndicates that the signal is coming from tadalafil while the response
alue of 100 to b4 indicates it is lactose. Examination of the regres-
ion vectors in Fig. 4A indicate that each vector has predominantly
ositive features of the spectrum coded 100 and negative features
f the spectrum coded 0. Before these vectors are loaded onto SLM,
egative parts should be converted into positives by splitting each
ector into two (SLM does not recognize negative vectors) and then
aking the absolute value of the negative part to convert it to a
ositive value. Fig. 4B and C illustrate the way that b3 and b4 are
plit into two portions respectively, each of which are non-negative
unctions, and scaled to a maximum value of 1 which corresponds
o the maximum SLM transmittance. As a result, four LC-SLM-CD
lters are constructed from two PLS regression vectors shown in
ig. 4A. Later, the results obtained on these four filters are recon-
tructed to give the final scores values for each corresponding b3
nd b4 vectors [4]. At the end, the total number of filters was five,
ncluding one more for normalization purpose in addition to four
omponent filters. The normalization filter is formed by setting all
he pixels on SLM to 100% transmittance, allowing the LC-SLM-CD
ystem to detect all photons reaching the SLM.
When PLS-DA regression vectors are used as filters, the LC-SLM-
D produces the scores as response values. Thus, the detected signal
oming from the sample is classified based on the measured score
alues of the spectrum with each PLS-DA filter. Fig. 5 shows the
of  HPC are located away from those of the rest of the samples (circled in the inset).
For  better illustration, the HPC cluster is shown in the inset. Each cloud represents
∼2500 responses of ∼2500 spectra measured on each powder sample.

scores, which are obtained from the application of two PLS-DA
regression vectors (b3 and b4) whose positive and negative compo-
nents form the actual filters loaded on the SLM, plotted against each
other for the PLS-DA model describing the differences between
tadalafil and lactose. Before constructing Fig. 5, responses to each
filter are normalized by dividing them by the responses to the
normalization filter in order to minimize variance due to instru-
mental fluctuations and morphological differences in the sample.
The abscissa of Fig. 5 denotes the responses to the filter where lac-
tose is coded as 100 in PLS-DA algorithm. The ordinate, on the other
hand, represents the responses to the filter where tadalafil is coded
100. 2500 points on each sample were collected with a collection
time of 10 ms  per filter. Each cluster in the figure corresponds to the
filter responses of these 2500 spectra coming from various locations
on each sample powder placed in 96-well plates (some obvious out-
liers are deleted in each cluster). The total collection time of 2500
points was about 2 min. A separation between tadalafil and lac-
tose can clearly be seen in the figure. Also it shows the responses of
the other six unsupervised pharmaceutical ingredients-MCC, MgSt,
TiO, talc, NaLS and HPC-measured by the LC-SLM-CD Raman system
using the same filters trained for only tadalafil and lactose. Fig. 5
illustrates that in all cases, except between lactose and NaLS, we
were able to obtain good separation between the clusters. The high
discrimination of tadalafil and lactose is expected since the filters
are trained to describe the differences between them. It is particu-
larly impressive that the responses of other raw ingredients to the
same filters were, in fact, able to classify and discriminate them
from each other as well although we see partial overlap between
lactose and NaLS.

The accuary of classification on LC-SLM-CD can be improved by
increasing the integration time for each filter. The powder mixture
of two  common excipients, lactose and magnesium stearate layered
on a glass slide, are analyzed in order to evaluate how integration
time affects the classification. Four sets of PLS filters that are trained
on lactose and magnesium stearate (in addition to one normaliza-
tion filter function) are generated to classify them. Fig. 5 contains
LC-SLM-CD chemical classification plots obtained using different
integration times of 500 �s, 2.5 ms,  and 10 ms  per point for each

filter function. Even a 500 �s integration time per filter was able to
generate a decent classficiation plot although better classification
is achieved with increasing integration time.

Fig. 6.



D. Cebeci Maltaş et al. / Journal of Pharmaceutica

Fig. 6. LC-SLM-CD classification of magnesium stearate (MgSt) and lactose at dif-
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erent accumulation times. Accumulation times per filter: (A) 500 �s; (B) 2.5 ms; (C)
0  ms.

. Conclusion

We  have demonstrated the feasibility of a hybrid super-
ised/unsupervised hardware-based hyperspectral compressive
etection strategy for rapid classification of pharmaceutical ingre-
ients with recently designed LC-SLM-CD Raman instrument. This

nstrument is a near-infrared Raman spectrometer which is opti-
ized for high speed applications using single-channel, low noise

ompressive detection strategy. With successful application of a
ultivariate projection technique PLS-DA, we report how LC-SLM-

D Raman spectroscopy can be a fast, effective analytical method
or PAT applications to identify and classify various pharmaceuti-
al raw ingredients. The method was able to discriminate several
aw material components by applying PLS-DA filters trained to
dentify only two components. Collection of spectral responses
er single location on the sample takes only 50 ms  (10 ms  per
lter), giving almost instant results. The total collection time for
500 points was only about 2 min, which would typically take
bout 42 min  with a typical collection time of 1 s per spectrum
sing a traditional CCD-based Raman spectrometer. Although the
C-SLM-CD system was built for fast hyperspectral Raman imag-

ng applications, this study shows that it can be readily adapted
o other high speed analytical applications. Rapid and accurate
echniques for classification of raw ingredients for manufactur-
ng are an essential step in the implementation and success of

[

[

l and Biomedical Analysis 80 (2013) 63– 68 67

the PAT program. This study is an important step toward the
acceptance of LC-SLM-CD Raman spectroscopy as a valuable mul-
tivariate PAT sensor for identity testing of raw materials in the
pharmaceutical industry. Although the collection time per point
was 10 ms  per filter, it is also shown that shorter accumulation
times may  be adequate. Thus, we conclude that the LC-SLM-CD
Raman instrument has the potential to monitor real time manu-
facturing processes in,  on or immediately at the process stream
when combined with an appropriate probe. Most importantly,
our implementation of this hardware-based hyperspectral com-
pressive detection strategy demonstrates the feasibility of training
a LC-SLM-CD system using a relatively small library of impor-
tant pharmaceutical ingredients and then using that system not
only to validate the identity of compounds in the library, but
also to determine that a given sample lies outside the training
library. Moreover, the response obtained from such an unknown
compound could be used to assist in its subsequent chemical
identification, by comparing the measured response against the
response of various compounds (outside the training library).
Such an LC-SLM-CD based screening procedure could greatly
speed up and simplify the process of chemically identifying the
unknown.

More generally, this work can be considered as a first step
toward the fast imaging application of LC-SLM-CD Raman spec-
troscopy on solid pharmaceutical formulations. The set of digital
filters used for this study can be applied to an intact Cialis® tablet
to image tadalafil, lactose, MgSt, MCC, talc, TiO, NaLS and HPC to
determine each component’s spatial location in the tablet. The 2500
response values obtained in this study can be statistically analyzed
to set the threshold values for each component in the image. Then,
the values of LC-SLM-CD responses to both filters on each spatial
position on the tablet would reveal the identity of the component
on that specific location. Accordingly, a composite image of the
tablet, where the eight components are displayed, can be formed
from the LC-SLM-CD response values. For example, an image with
an area of 2 mm × 2 mm with 20 �m spatial resolution takes about
3 h to collect with a typical 1 s collection time on CCD-based Raman
instrument while it would take only about 8 min  to collect the same
area on LC-SLM-CD system with the filter set used here and at the
end, an image of eight components in the Cialis tablet would be cre-
ated. If the purpose, on the other hand, is to generate an image of
only one component, such as the active ingredient tadalafil, then a
simple univariate filter (plus an “all-on” filter) would be sufficient.
In this case, imaging the same area on the tablet would only take
about 3 min  with 10 ms  per filter collection time although shorter
accumulation time may  be possible (as opposed to several hours
that would be required to produce a full spectral image of the same
area).
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