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Abstract This article reports a new Raman imaging instru-
ment based on liquid crystal spatial light modulator compres-
sive detection (LC-SLM-CD) strategy that could provide a
fast way of testing the composition of solid formulations. In
this study, the LC-SLM-CD strategy is employed to investi-
gate the qualitative and relative quantitative distribution of
two commonly used ingredients, acetaminophen and lactose
in a pharmaceutical tablet. The spatial distribution of each
component is formed based on the responses of the samples
to the partial least squares filters built into the instrument. This
technique has proven to be a fast and feasible technique for
noninvasive determination of blend quality and for determi-
nation of relative abundances of each component in a tablet.

Keywords Raman spectroscopy - Hyperspectral imaging -
Compressive detection - PLS

Introduction

Throughout the formulation development of solid dosage
forms such as tablets, the goal is that every unit of final drug
product will have the desired performance with identical
therapeutic effects. The drug’s physical properties, and ulti-
mately its performance, highly depend on the quantities of the
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components and how well the final product is blended. A
relatively small degree of deviation from the optimum speci-
fications may yield a widely varying therapeutic performance.
Thus, determining the blend quality and generating statistical
blending data quickly is imperative for production and is
critical for process analytical technology (PAT) to reduce the
cost and delay time in a production cycle.

High-performance liquid chromatography, UV/visible
spectroscopy, or mass spectrometry are widely used tools to
determine the gross composition of formulations, but none of
them provides any insight into the distribution of the compo-
nents within the analyzed sample. Dissolution testing, on the
other hand, is employed to obtain drug release profiles, indi-
cating the duration of component release. However, these
currently used methods provide no information regarding the
root cause or structural basis for changes in the dissolution
profile. Thus, it is impractical and inefficient to quickly trace
the failure and correct it with these traditional tools. In addi-
tion, these standard quality control techniques are destructive,
laborious, and time consuming, which stalls the production
awaiting test results from the quality control laboratory fol-
lowing the tablet compaction process. In fact, the analysis to
validate the quality of blending takes more time than actual
blending process.

Spectroscopic techniques, such as Raman and near infrared
(NIR), can provide a rapid, nondestructive, means of monitor-
ing a manufacturing process. Both techniques measure similar
molecular vibrations. In imaging mode, they can provide an
assessment of the content uniformity of a sample in terms of the
spatial distribution of the ingredients. While Raman spectra is
characterized by narrower peaks, giving better information on
molecular level, wide, overlapping NIR bands are difficult to
assign. However, NIR interrogates larger areas than Raman in
shorter times. A study by Jerez-Rozo et al. evaluated the use of
NIR and Raman mapping to investigate the spatial distribution
of the components of polymeric films [1].
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Raman imaging is conventionally done by collecting a
large number of spectra at desired spatial positions on the
sample, which produces “data cubes”, containing the Raman
signal intensity measured as a function of x and y (spatial) and
spectral dimensions [1, 2]. Subsequently, spectra are convert-
ed to chemical component information through either univar-
iate or multivariate data analysis. The common way to gener-
ate an image of a certain component is to calculate the area ofa
unique spectral peak pertaining to each component of interest,
and plotting the intensities obtained at each spatial location in
the image. However, when it is not possible to find a unique
peak for the investigated component which does not overlap
with any other components, multivariate data analysis tech-
niques [3], such as partial least squares (PLS), are typically
used to extract chemical composition information from the
spectra. Most importantly, collecting a full Raman spectrum
typically requires at least 1 s, and so collecting a hyperspectral
image can be very time consuming (for example, even a
moderately small 100x 100 image requires about 3 h of data
collection). Hence, traditional Raman imaging requires signif-
icant expertise and time, which hinders Raman imaging ap-
plications on a routine basis.

Recently, a new way of doing fast Raman imaging based
on a liquid crystal spatial light modulator compressive detec-
tion (LC-SLM-CD) strategy was reported [4]. The instrument
is used with compressive detection filters loaded on program-
mable SLM to compress full-spectral data onto a single-
channel detector. These filters can be generated by applying
multivariate data analysis techniques, such as PLS. LC-SLM-
CD Raman system measures the responses of Raman spectra
to the filters created on SLM. This system effectively incor-
porates data analysis into its hardware, eliminating extensive
imaging data analysis required once the necessary filters are
generated [4].

In this study, we investigated a two-component pharma-
ceutical tablet composed of acetaminophen (APAP) and lac-
tose to demonstrate the capability of the LC-SLM-CD Raman
strategy for fast imaging of pharmaceutical composites. More
specifically, we show that this method may be suited to
determine the distribution of the two components as well as
the gross composition of each tablet.

Methods

The Raman maps were collected with a single mode diode
laser of 785 nm wavelength that delivers 80 mW of power at
the sample with a x20 (NA 0.40) NIR objective lens. The laser
spot size on the sample was about 7 pm. Compressive detec-
tion filters were generated using the PLS algorithm (PLS
Toolbox (Eigenvector Research Inc., WA, USA) and
MATLAB (MathWorks, Inc., MA, USA)). Figure 1 illustrates
how the PLS model is established to create the regression
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coefficient vector from lactose and APAP components to be
used for compressive detection filters in the LC-SLM-CD
Raman system. Because the training matrix is composed of
pure components, the property vector is made of 0 s (indicat-
ing APAP) and 100 s (indicating lactose).

Spectra of pure lactose and APAP used to produce PLS
regression vectors are shown in Fig. 2a. The spectra are
normalized to the unit area prior to implementing PLS analy-
sis. Figure 2b shows the output regression coefficient vector
(b2 in Fig. 1) of the PLS analysis using the spectra from
Fig. 2a. This vector, b2, is essentially what is used as an
SLM filter function after adapting it to SLM voltage values
[4]. It consists of positive and negative portions as seen in
Fig. 2b. Before it is transformed to LC-SLM-CD compressive
detection filters, the negative portion should be converted into
positives by splitting it into two (SLM does not recognize
negative vectors) and then taking the absolute values of the
negative portions of each vector to convert them into a posi-
tive filter function. As a result, two LC-SLM-CD filters
(Fig. 2c) are generated from one PLS regression vector (b2).
The two filters are scaled to a maximum value of 1 to set them
to the maximum SLM transmittance. Scaling constants are
later used to regenerate the response values to form the image

[4].

Results and Discussion

LC-SLM-CD measures the responses (scores in this study)
generated by passing light emanating from a given point in the
sample through each of the filters generated from the PLS
regression coefficient vectors. Note that measuring the light
transmitted (or reflected) by an optical filter is equivalent to
obtaining the dot-product of the spectral vectors correspond-
ing filter and the light from the sample. Thus, the spectrum
coming from each point in the sample produces a score (dot-
product) for each filter, and those scores are used to identify
the composition of that point in the sample as belonging to
either the APAP or lactose class.

Images (50%200 pixels) with an area of 0.5x2 mm?’
were formed by collecting a series of spectral responses
from adjacent locations on the sample by moving the
sample at 10 pum intervals between each measurement.
The histogram plots formed in Fig. 3a show the distribu-
tion of the LC-SLM-CD responses to the digital filters at
each individual pixel for each sample; pure APAP, pure
lactose, and APAP-lactose mixed tablets. The abscissa
represents the spectral responses coming from each loca-
tion on the samples. The ordinate, on the other hand,
denotes the number of pixels possessing a certain value
of those responses. The spread in prediction values in the
histograms may be due to instrumental fluctuations or
sample inhomogeneity. The spectra necessary for the filter
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Fig. 1 Schematic of PLS-DA
filter function set up to generate
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Fig.2 PLS-derived filter generation. a Pure component spectra of APAP
(black) and lactose (red). b PLS output regression vector (b2) using
spectra from a. ¢ Production of two PLS regression vectors by splitting
the PLS regression vector in (b) into a positive part (red ) and the absolute
value of the negative part (black)
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homogeneous, filter functions may have represented only
a few points in the sample. As the heterogeneity increases,
the histogram starts deviating from normal distribution.
Also, since the spot size of the laser is considerably
smaller than the particle size of the components, sampling
volume may be another contribution in the spread. The
histogram plots on pure components in Fig. 3a are pro-
duced to set a threshold range to determine which pixels
are estimated to belong to the class of interest. With 99 %
confidence, the threshold for APAP was set at score
values of —10 to 35 and lactose is 60 to 95. Values
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Fig. 3 a Histogram plots of pure APAP, pure lactose and APAP-lactose
mixed tablet. b LC-SLM-CD response images (50 %200 pixels) of APAP-
Lactose mixed tablet. Red lactose, black APAP, and light yellow mixture
of APAP and lactose
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between 35 and 60 suggest that the signal is coming from
a mixture of the two components.

Figure 3b is the resulting LC-SLM-CD response image of
APAP-lactose mixed tablet. The image illustrates the spatial
distribution of the components APAP and lactose. While black
regions denote pure APAP, red regions represent pure lactose.
Yellow areas indicate pixels within the image that appear to
contain a mixture of the two components. Thus, each color
channel in this figure contains qualitative information about the
distribution of APAP and lactose in the tablet. Visual inspection
of the image reveals clearly distinctive, localized lactose do-
mains embedded in large APAP regions. Qualitatively, APAP
appears to be more abundant than lactose in the image.

While the visual examination provides qualitative informa-
tion, more quantitative information can be obtained by exam-
ining the statistical properties of the measured responses.
Although LC-SLM-CD responses do not provide information
about the absolute concentration of the components, the rela-
tive abundance information can still be reliably extracted from
the image data. The density of sampling (10,000 data points in
the image) offers a robust statistical analysis of sample com-
ponents. The investigated volume on the sample is in micro-
scopic range in LC-SLM-CD Raman system (~7 pum/pixel).
As a result, sample components with large particle size (typ-
ically >40 um for this study) comprise a spatially heteroge-
neous matrix relative to the experimental volume. Each parti-
cle typically occupies more than one pixel in the image.
Hence, a single pixel can be classified as belonging either to
one component or another. Accordingly, the relative quantity
can be estimated without having to develop a standard con-
centration calibration method. The relative abundance of
pixels belonging to pure APAP in the region imaged is esti-
mated to be 80 %, by counting the number of pixels between
—10 and 35 and then dividing it by the total number of pixels
in the image. Classified as lactose, yielding a 10 % pixel
abundance are ~1,000 pixels out of 10,000 between the values
of 60 and 95. All the other pixels between 35 and 60 corre-
spond to a mixture of the two ingredients in the volume
investigated, representing 10 % of the sample.

Conclusion
Although only two-component system is investigated in this

study, the possibility of expanding to matrices with multiple
components has been shown in a previous work [5]. If
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multiple components need to be explored, then the number
of necessary filter functions to define them all may also need
to increase, accordingly collection time will also increase. The
Raman chemical image with 10,000 points shown in Fig. 3b
took 5 min to collect, while the same size image would have
taken several hours to obtain using traditional CCD-based
Raman instrumentation. In addition, the data analysis required
to form the image is practically eliminated for LC-SLM-CD
system, as the scores used to produce the image are directly
detected using the instrument, rather than produced by
postprocessing of conventionally measured spectra. Thus,
the LC-SLM-CD Raman detection strategy shows promise
as a PAT sensing technology which can rapidly and noninva-
sively characterize solid dosage forms. The statistical analysis
of thousands of LC-SLM-CD responses or pixel/score values
provides information regarding the spatial distribution and
relative abundance of the components in the image. Such
information is of importance for manufacturing process mon-
itoring, as it provides statistical information regarding blend
quality. Since the data collection and data analysis can be
automated and displayed in real time, any deviation from ideal
specifications can be detected and fixed during production.
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